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A RFEMARK CN THE
"RANG-BANG" PRINCIPLE FOR LIVEAR CONTROL SYSTEMS

IN INFINITE DIMENSIONAL SPACES

INTRODUCTION

The "bang-bang" principle for linear control systems

w (%) = A{tju(s) + B(L)E(E) (1

N s

in finite-dimensional space E° (J. P. LaSalle, [1]) can be stated as fol-
lows: 4f the system (1) can be steered from a point u € E® to another

point v e E® ina given time t, > 0 by a control f teking values, say,

1
in the unit cube K of E° then the t.-asfer of (1) from u to v can
also be achieved in the same time by another control f'o teking values in
K,, ‘the set of extremel points of X, This result has beeu extended in
various directions; let us only mention [9], where K is 2llowed to be
any compact convex set in E . (See also [4], [7] for other types of gen-
eralizations). The "bang~bang" principle does not hold in infinite-dinen-
gional spaces; in fact, it is easy to construct control. systeus, even wlth
A and B time-independent where the final state v at a given time t2
depends »niquely on the contro. f. (See [2], [3]). However, the princinle
subsists if we satisfy ours:ives with approximating (and not actually attein.
ing) the "inal. state, Mo rer, it turns out that we can also approximate
the who.+ trajectory betwe-» u and Vv by means of Ko-valued controls
(Thzorem 2,2), This resuit is similar in form to the ome in [5] for rnon-
linear control systems in finite-dimensional cpece; 1its proof is an appli.-
cation of elementary facts of the theory of integration of vector-valued

functions.



1. THE INITIAL-VALUE PROBLEM

We shall denote by E,F two (real or complex) Banach spaces, L(F;E)
the Banach space of all linear bounded operators from F to FE endowed, as
usual, with the uniform operator topology. For each t in [to,tl] s < t
A(t) will be a (possibly unbounded) linear operator with domain D(A(t)).

We shall assume that the Cauchy problem for
u? (£) = A(t)u(t) (1.1)

is well set. This means there exists an evolution operator y(t,s), i.e. a

strongly continuous L(E,E)-valued function U(t,s) defined in the triangle
t,ssststy satisfying U(t,t) = I, t €tst, andsuch that for each

t e [t,t)), ueE the function
u(s) = U(s,t)u

is a (classical or generalized) solution of (1.1l) in [t,t,]. For any
strongly measurable function g(-) defined and summeble in [t ,t,] and
any u € E we shall define the expression

t
u(t) = U(t,to)u + { U(t,s)g(s)ds (1.2)

o

to be a solution of the inhomogeneous equation
ut (%) = A(t)u(t) + g(t). (1.3)

It is easy to see that the function wu(-) defined by (1.2) exists and is

continuous in [t ,%,]. Under additional conditions on A(t),U(t;s),g(s)



and u it is possible to show that (1.2) is a genuine solution of (1.3);
we ghall not dwell upon this point here,

Finally, we consider the linear control system

ut (t) = A(t)u(t) + B(t)L(t), t stst (1.4)

1l

For each t, toé t S tl’ B(t) is a bounded operator fram F to E,
We assume that B(.) is strongly measurable, i.e, that for any u € F the
E-valued function B(s)u is strongly measurable; moreover, we suppose

there exists a scalmr-valued function 7(-), summable in [t,,t;] such

that

[B(t)] = n(t), t stst (2.5)

The class of controls iK consists of all strongly measureble Fe-

valued functions f£() defined in [t ,t,] with values in some fixed

closed, bounded, convex set X, The trajectories of the system (1. L) are

the solutions of (1.4) for scme control f e Lys i.e, functions of the form

t .
u(t) = U(t,to)u + [ U(t,s8)B(s)f(s)ds (1.6)

t

o

with f e Since B(+)f(c) is sumsaeble in E, each trajectory u(s)

K.
is continuous in [to,tl].

2, THE BANG-BANG PRINCIPLE

In all that follows, Ko will be a subset of K satisfying

2.1 ASSUMPTION, Finite convex combinations of elements of Ko (i.e.finite



sums Z)‘kuk: N2, ZKK=1, “keKo\) are dense in K.

Let us call £ the subsget of ;CK defined by the following two con-

: KO
ditlons:
(a) There exists disjoint intervals Ipsees » I = [t,,t,] such
that f 1s constant in each Ik' |

(v) £(t) € K, forall te [to,tl].

2.2 THEOREM Let u(.) be a trajectory of (1.4) corresponding to some

f e ;CK and let ¢ > 0. Then there exists a fo € th such that the tra-
(o)

jectory uo(-) corresponding to f_ satisfies

|u(t) - uo(t)lE se t stst,.

The proof of Theorem 2.2 is a consequence of the following auxiliary

result:

2.3, LEMMA Let X bYe a Banach space, N(.) a L(F; X)-valued, strongly

measurable function defined in [t ,t such that |N(t)| s q(t), t,sts

1]
£ t, for same summable function n(-). Let X (.%o) be the set of all

elements c'.fi_' X o_f the form

k7

1
[ N(s)f(s)as, (2.1)
ty .
fez(fe £, ). Then :7&0 is dense in K.
o

In fact, assume Lemma 2.2 holds. Denote \s(E) = X the Banach

space of all E-valued continucus functions u(-) defined in [t,t]




(norm lu(«)!x = supto_s_tétlh(t)l). Let € >0, U the L(E,E)~valued
function defined in the square t_ = s, t 1, as being equal to u(t, =)
in the triangle I € s, tst,, null in the triengle t st se-c¢ s

£ t. - ¢ and defined elsewhere such as to be continuors i1 the square and

1
such that

81, - = It s o 2.
BUD, < 4..»-1"6‘ ’S)Jl,(r-,_-_,/ ¢ suptOS&'ététllU‘t’Q”L(E,E) (2.2)
v

s» 18 not difficult to see that the ~ L(Fy (& (E)).-valued function N(s) =
=

= Ue(-,s)B(s), t, = s 5 t; 1s strongly mevsurable and (1.5) implies that

1
it satisfies the rest of the assumption of Lemma 2,3, Consequently Lemma

2.3 tells us that the set of elements of JS(E) of the form
tl .
[ U_(t,8)B{s)£(s)ds, (2.3)
t
o
with f ¢ il( 1s dense (in the S (E)-topology) in the set of elements
o

of the form (2,3) with f e This would yleld Theorem 2.2 if we had

K.
U instead of U, in (2,3); ncte, however, that
ot ) % min(t+e, t,)
i[ u(t,8)B(s)f(s)ds - { Ue(t,s)B(s)f(s)dle s cc, [ n(s)ds
t t
o ‘o

C, on upper bound for (|u|l; w €K}, n(-) the function in (1.5). This

proves Theoir'm 2,2,

Proof of Lemma 2,3. The proof is trivial if N(-) is uniformly

measurable (i.e, measuratle as an L(FjX)-valued function), For in this
case, given € > 0 we can find disjoint intervals whose union differs from

[to,tl] is a set of measure s € and operators N e L(F;X) such that



[N(s) - Nle(F;X) se sel.

Thls makes clear that we only nged to prove Lemmes 2.2 for the case N con-

1
stant, Let f e L, If v= J f(s)ds, it follows fram the fact that K
t
)

is closed and convex that (tl-to)'lv € K., Then it can be approximated ar-

bitrarily well by (finite) convex combinations 1, }‘kuk’ v € K. But then

Nv can be approximated by elements of the form N(tl-to)u, and N(tl-to)u

t
1

={ Nf_(s)ds, where f _(s) =u  for s e J,
o

(disjoint) subintervals of [to,tl], length (Jk) = (tl'to))‘k'

J,. an arbitrary family of

k

Observe next that if F 1s finite-dimensional, the concepts of strong
and uniform measurability for N(.) coincide. We shall thus end the proof
by reducing the general case to that in which dim F< o, ILet f ¢ iK.
Since f is strongly measurable, we can find a g of the form

= T , 2.k
g(s) (eingte) X, (s)y (2.4)

Uy,l5,000 € Ky X Xnseen characteristic functions of disjoint measurable

sets e;,e.,... in [t_,t;] such that |£(s) -g(s)| s e in [t,t]

outside a set of measure £ e, thus we can assume f to be of the form

(2.4). Now, since each w, ©can be approximated by convex combinations

(k)
Z?:l '\kjukj’ ukj € Ko’ we can assume the values of f actually belong to
the convex bull K!' of the points w,, k=1,2,... 15]% m(k). But K¢

is contained in the finite~dimensional subspace F! of F generated by the



W5 and those points satisfy Assumption 1 (with respect to K') thus our

result for finite-dimensional F applies, completing the proof of Lemma

2.2,

2.4, REMARK, Assume F 1is the dual of another Banach space Fl’ Thus K

is compact in F with respect to the weak topology. But then, by the Krein-
Milman theorem ([1], Chapter V, 8.k), K is the closed (in the weak topology)
convex envelope of its set of extremal points. However, the closed convex
envelope of a set is the same in the strong as in the weak topology, thus

K., ‘the set of extremal points of K satisfies Assumption 2,1, In some
cases, Ko can be chosen to be a proper subset of Ke’ The most interest-
ing case in spplication is that in which Ko is substantially smaller than
K; for instance, if K 1is a polyhedron in a finite-dimensional space F,
we may take Ko to be the set of its vertices. Thus, the steering of (1.1)
can be achieved up to any degree of accuracy with controls assuming only a

finite number of values.

2.5. REMARK, Theorem 2,2 admits evident generalizations to infinite time

intervals (to,oo) moving control sets K = K(t), etec,
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1.

FOOTFOTES

See [1] for definitions and results used here.

All the integrals throughout this paper are Bochner integralsy see [6],

Chapter 3 for an exposition of the theory of integration of vector-

valued functions,



